

Exercise 1. Let $C_{2\pi}^0(\mathbb{R}, \mathbb{R}^3)$ be the space of continuous 2π -periodic functions. The Douglas functional is defined for all $f \in C_{2\pi}^0(\mathbb{R}, \mathbb{R}^3)$ by

$$D(f) = \frac{1}{4\pi} \int_0^{2\pi} \int_0^{2\pi} \frac{|f(\theta) - f(\varphi)|^2}{4 \sin^2\left(\frac{\theta-\varphi}{2}\right)} d\theta d\varphi,$$

coincides with the Dirichlet energy of its harmonic extension (to be defined below)

$$E(u) = \frac{1}{2} \int_{\mathbb{D}} |\nabla u|^2 dx.$$

1. Show that

$$D(f) = \frac{1}{4\pi} \int_0^{2\pi} \int_0^{2\pi} \frac{|f(\theta) - f(\varphi)|^2}{|e^{i\theta} - e^{i\varphi}|^2} d\theta d\varphi.$$

2. Using the Poisson formula (or the theory of Fourier series), show that if $f \in C^0(\mathbb{R}, \mathbb{R}^3)$ is a 2π -periodic function, the only function $u \in C^2(\mathbb{D}, \mathbb{R}^3) \cap C^0(\overline{\mathbb{D}}, \mathbb{R}^3)$ such that

$$\begin{cases} \Delta u = 0 & \text{in } \mathbb{D} \\ u(e^{i\theta}) = f(\theta) & \forall \theta \in \mathbb{R} \end{cases}$$

is given by

$$u(re^{i\theta}) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} r^n (a_n \cos(n\theta) + b_n \sin(n\theta)),$$

where $a_n = \frac{1}{\pi} \int_0^{2\pi} f(\theta) \cos(n\theta) d\theta$ and $b_n = \frac{1}{\pi} \int_0^{2\pi} f(\theta) \sin(n\theta) d\theta$.

We say that u is the *harmonic extension* of f .

3. Show that for all $n \geq 1$, we have

$$\begin{aligned} |a_n|^2 + |b_n|^2 &= \frac{1}{\pi^2} \int_0^{2\pi} \int_0^{2\pi} f(\theta) f(\varphi) \cos(n(\theta - \varphi)) d\theta d\varphi \\ &= -\frac{1}{2\pi^2} \int_0^{2\pi} \int_0^{2\pi} |f(\theta) - f(\varphi)|^2 \cos(n(\theta - \varphi)) d\theta d\varphi \end{aligned}$$

4. Show that for all $0 < r < 1$, we have

$$E_r(u) = \frac{1}{2} \int_{B(0,r)} |\nabla u|^2 dx = \frac{\pi}{2} \sum_{n=1}^{\infty} n r^{2n} (|a_n|^2 + |b_n|^2).$$

5. Define

$$Q(r, \alpha) = \begin{cases} -\sum_{n=1}^{\infty} n r^{2n} \cos(n\alpha) & \text{for all } 0 \leq r < 1 \\ \frac{1}{4 \sin^2\left(\frac{\alpha}{2}\right)} & \text{for } r = 1 \end{cases}$$

and deduce that

$$E_r(u) = \frac{1}{4\pi} \int_0^{2\pi} \int_0^{2\pi} Q(r, \theta - \varphi) |f(\theta) - f(\varphi)|^2 d\theta d\varphi \quad \text{for all } 0 < r < 1.$$

6. Show that $Q(r, \alpha) \leq Q(1, \alpha)$ for all $0 \leq r < 1$ and that $Q(r, \alpha) \rightarrow Q(1, \alpha)$ for all $\alpha \neq 0 \pmod{2\pi}$.
7. Assuming that $D(f) < \infty$, deduce that

$$E_r(u) \xrightarrow[r \rightarrow 1]{} E(u) = D(f).$$

8. Conversely, assume that $E(u) < \infty$ and for all $0 < \varepsilon < \pi$, let

$$R(\varepsilon) = [0, 2\pi] \times [0, 2\pi] \cap \{(\theta, \varphi) : |e^{i\theta} - e^{i\varphi}| > \varepsilon\}.$$

Show that for all $0 < \varepsilon < \pi$, we have

$$\int_{R(\varepsilon)} Q(1, \theta - \varphi) |f(\theta) - f(\varphi)|^2 d\theta d\varphi \leq 4\pi E(u) < \infty.$$

9. Deduce that $D(f) < \infty$ and conclude the proof of the theorem.